欢迎来到全天候!
注册
全天候首页

北京泊菲莱科技有限公司

主营产品:实验室用品

18618322577

公司名称:北京泊菲莱科技有限公司

联 系 人 :米先生 联系电话:18618322577

联系我们

光电催化基础知识之过电位

发布时间:2024-01-07 17:42:39

过电位,亦称超电势、过电势,是指在电催化或光电催化反应过程中,达到一定电流密度时所需实际电压超过理论电压的部分。 理想的状态下,电催化或光电催化反应所需的运行电位即为平衡状态下的电位。然而,实际反应中的工作电位往往需要克服动力学过程的阻碍从而表现出高于平衡电位的数值,超出理论值的电压称为过电位,主要用来克服活化电阻和电荷转移电阻等其他电阻[1]。 简单地理解,过电位是指电流密度达到指定水平时的实际电位与平衡电位的差值,它直接地反应电催化或光电催化反应的催化活性。 根据能斯特方程[2],实际工作电位E可以表示为:E:实际反应的工作电位 E0:反应的标准电位 T:零度(27℃) R:理想气体常数 F:法拉第常数(96485 C/mol) N:反应中转移的电子数 C0:氧化产物的浓度 CR:还原产物的浓度过电位基本公式可表示为::过电位 :实际电位 :理论电位理论上来讲,过电位越接近于0 V,催化剂的性能越好,达到相对电流密度所需的实际电压越低,耗能相对越小,催化活性越高[3]。需要注意的是,在比较不同催化剂的过电位时,一定要指明具体的电流密度,否则比较出的结果没有太大意义。 在具体指明的电流密度下,催化剂的过电位越低,表明其对目标反应的催化能力越强,通常选择电流密度为10 mA/cm-2时的条件下,判断催化剂的性能。Fig.1 (a) and (c) Polarization curves[4, 5]; (b) LSV curves[6]; (d) Overpotentials (at 10 mA·cm-2) [5].参考文献[1] Zhu Han, Wang , Gao Guohua*, et al. When Cubic Cobalt Sulfide Meets Layered Molybdenum Disulfide: A Core-Shell System toward Synergetic Electrocatalytic Water Splitting[J]. Advvanced Materials, 2015, 27(32): 4752. [2] Bard Allen J, Faulkner Larry R, Leddy Johna, Zoski Cynthia G. Electrochemical Methods: Fundamentals and Applications[B], Department of Chemistry and Biochemistry University of Texas at Austin, Wiley, vol. 12. New York, 2000. [3] S. Anantharaj, S. R. Ede, Subrata Kundu*, et al. Precision and correctness in the evaluation of electrocatalytic water splitting: revisiting activity parameters with a critical assessment[J]. Energy & Environmental Science, 2018, 11:744. [4] Priti Sharma, Debdyuti Mukherjee, Yoel Sasson*, et al. Pd doped carbon nitride (Pd-g-C3N4): an efficient photocatalyst for hydrogenation via an Al-H2O system and an electrocatalyst towards overall water splitting[J]. Green Chemistry, 2022, DOI: 10.1039/d2gc00801g. [5] Zhang Ya, Hu Lang, Zhang Yongcai*, et al. NIR Photothermal-Enhanced Electrocatalytic and Photoelectrocatalytic Hydrogen Evolution by Polyaniline/SnS2 Nanocomposites[J]. ACS Applied Nano Materials, 2022, 5, 391. [6] Bai Jinwei, Hjinlu*, Wang Lei*, et al. Reduction of Charge Carrier Recombination by Ce Gradient Doping and Surface Polarization for Solar Water Splitting[J]. Chemical Engineering Journal, 2022, 448: 137602.

本文素材来源:https://www.perfectlight.cn/technology/detail-55.html

光催化实验中流量气体,你设置对了吗?
在环境治理研究中,会有需要气体以流动形式参与反应,主要包括光热催化CO2加氢反应、光热催化甲烷重整反应和光催化气体污染物降解反应等。在流动相反应过程中,由于反应气体始终处于流动状态,因此,实验反应过程中需要调节气体流量稳定参与反应。目前,泊菲莱科技在售产品中,涉及气体参与的流动相反应装置的主要产品有以下三种: 1. PLR-PTSR Ⅱ光热催化反应仪,主要适用于流动相气固光热催化反应,如光热催化CO2加氢、光热催化甲烷重整和光热催化CO2还原反应; 2. PLR-GSPR常压气固相光催化反应系统,主要适用于流动相气体污染降解反应,如光催化NOx的降解、光催化VOCs的降解反应; 3. PLD}
2024-01-18 11:12:29
直接太阳照射的大面积光催化分解水制氢系统
氢,是宇宙中古老的元素,太阳诞生之前它就已经存在了;氢,也是宇宙中丰富的元素,氢原子占了整个宇宙原子数的88.6%。不仅水中有氢,太阳的能量来源于氢,未来地球的主要能量来源可能也是氢能。 绿氢是利用太阳能、风能等可再生能源产生的,可以“绿电”制“绿氢”或光催化分解水制氢。 绿电就是用风、光、水、地热等可再生能源发电,接着再通过绿电催化分解水而生产的H₂,其碳排放极低。 自去年我国“双碳”目标提出以来,绿氢在国内掀起了一轮热潮。电解水制氢具有绿色环保、生产灵活、纯度高等特点,可以满足高纯度的氢气需求。 大规模、低成本、清洁的绿氢从哪来-光催化分解水制氢 中国科学院院士、中国科学技术大学化学与材}
2024-01-13 15:28:51
一文读懂光电转换效率IPCE计算方法
入射单色光-电子转化效率(Incident Monochromatic Photon-Electron Conversion Efficiency,IPCE)定义为流经闭合电路中的电子数与入射单色光的光电子数的比值,用来评价不同波长下的光电转化效率,是评价光电极光电化学性能的重要指标之一。 由于半导体材料对不同波长的入射光具有不同的响应,因此,测量光电极的IPCE对评估光电极对单色光光子的利用率会更加,进而在改进光电极提升其光电化学性能上更具针对性[1]。IPCE计算公式如下[2]:jph:光电流密度(mA·cm-2),通过计时电流法(恒电位)测得 h:普朗克常量(6.62×10-34 J·}
2023-12-28 14:40:36
光电催化基础知识之Tafel斜率
在电化学和光电化学反应中,理想的催化剂在较小的过电位就能够显现出较高的电流密度。 Tafel斜率能够为探究反应机制提供重要参考,特别是在阐明反应速率决定步骤和反应路径方面。 在电化学和光电化学实验中,动力学关系一般用Butler-Volmer公式[1]来表示:(1)i:电流密度 i0:交换电流密度 αa:阳极电子转移系数 αc:阴极电子转移系数 n:反应中转移电子数 F:法拉第常数 E:施加电压 R:通用气体常数 T:热力学温度在阳极高电位下,电流主要来自阳极电流,阴极电流可忽略不计,公式(1)可简化为(2)其中η为过电位,公式(2)也可被成为Tafel公式,对Tafel公式两边取对数可变为}
2023-12-26 08:31:43
光电催化基础知识之光电催化
光电催化是光催化与电催化的结合,可将两种技术的优点大化体现。 与光催化相比,光电催化反应中,光电极可利用太阳光照射产生光生电子,提高反应活性和催化效率。 与电催化相比,光电催化反应大大降低了外部能量的注入,可有效减少能源消耗和环境污染。 光电催化还可以将因能带结构的失配而不适用于光催化的催化剂,在适当的外加电压条件下适用于光电催化。光电催化反应可根据反应物质和反应类型的不同,分为光电催化分解水制氢、光电催化降解、光电催化二氧化碳还原、光电催化氮还原合成氨等等。光电催化反应过程是在有光照射作用下的电化学过程,是因吸收光使电子处于激发状态,产生电荷传递的过程。由于半导体材料存在禁带,价带电子与导}
2024-01-02 16:10:12
免责声明:
北京泊菲莱科技有限公司 所提供的公司介绍、产品信息等相关信息均有北京泊菲莱科技有限公司自行负责,商品内容真实性、准确性、合法性由北京泊菲莱科技有限公司完全承担,全天候商务网对此不承担任何保证责任。